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Abstract- We cxamined the effccts on the SIF (stress lI1tcnsity factorl of the deviatoric and shear
ferroelastic transformations and phase switching near thc crack tip for plane strain deformations of
ferroc!astic-type crystals. Motivatcd by experimental observations. wc confined ourselves to those
materials whose paraelastic phasc is marked by low anisotropy and therefore can be idealized as
isotropic. It was found that thc transformed zone ahead of a stationary crack tip contributes nothing
to the SIF for single and bi-crystals. However. the transformed wake left behind the steadily growing
quasi-static crack tip always reduced the SIF considerably; this toughening effect is very sensitive
to the mismatch angles between the crack surface and the principal axes of the transformed material
for ferroelastic switching. but not for ferroc!astic transformations. The numerical results for the
steady-state and quasi-static crack growth werc verified by the energy method. The computed results
agree qualitatively with the observed values for NiTi-SMA of low anisotropy.

I. I"JTRODUCTIO"J

Transformation toughening has long been known for the TRIP (TRansformation-Induced
Plasticity) steels (Gerberich et al.. 1969; Antolovich and Singh. 1971). However, there has
been a surge of interest [e.g. see Evans (1989) and Green ('{ al. (1989)] in this field since
Garvie et al. (1975) discovered that the martensitic transforma tion triggered by the elevated
crack tip stress will considerably reduce the SIFs (stress intensity factors) and therefore
enhance the fracture toughness for zirconia-reinforced ceramic systems. Such a toughening
phenomenon has been explained successfully by examining the interaction between the
deformation field and the transformation-induced strain near the crack tip. The related
transformation has been modeled as pure dilatant by McMeeking and Evans (1982) and
Budianskyet al. (1983 l. and the effects of shear stresses and shear strains on transformation
toughening have been examined by. among others. Lambropoulos (1986), Stump (1989),
Karihaloo and Huang (1989) and Budiansky and Truskinovsky (1993).

The similar problem for ferroelectric and other materials in which the stress-induced
phase transformation plays an indispensable role in their fracture behavior is also of
interest. We note that the effects of transformation on fracture behavior in ferroelectric
materials (e.g. BaTiO,! have been examined [e.g. see Pohanka et al. (1978) and Freiman
(1986)]. It is found that the fracture toughness in the ferroelectric state is considerably
higher than that in the paraelectric state. and such a toughening phenomenon has been
attributed to the interaction between the crack tip and the ferroelectric domain wall formed
during the paraelectric -+ ferroelectric phase transformation. The paraelectric -+ fer­
roelectric phase transformation is basically temperature-induced, even though the pressure
may affect the temperature (Fatuzzo and Merz, 1967) at which the transformation occurs.
The mechanical analogy of a ferroelectric material is a ferroelastic material, i.e. a material
which exhibits two or more stable states characterized by different spontaneous strain in
the absence of external mechanical loads ; the material in one state can be transformed into
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another state by applying mechanical loads (Aizu, 1969). Therefore. it is of interest to
examine the effects of phase transformations on the fracture behavior of ferroelastic
materials.

Even though the transformation strain for some ferroelastic materials is large, we use
the kinematically linear theory here. Within the framework of a linear theory, the strain
can be divided into the dilatational, deviatoric and shear components, and therefore the
two basic kinds of transformations in ferroelastic materials are the deviatoric and shear
transformations. The constitutive theory of deviatoric transformations has been developed
by, among others, Barsch and Krumhansl (1988) and Jacobs (1985, 1992), and that of
shear transformations may be developed in the same way. Henceforth, for brevity, we call
deviatoric and shear transformations in ferroelastic materials ferroelastic deviatoric and
ferroelastic shear transformations. We note that the mechanical behavior of a SMA (shape
memory alloy) under a certain range of low temperatures has been modeled by the ferro­
elastic-type shear transformation by Falk (1980) and Achenbach and Muller (1985).
Several other related references may be found in the proceedings of a conference edited by
Delaey and Chandrasekaran (1982).

Here, we examine the effects on the SIF of deviatoric and shear transformations and
ferroelastic switching induced by the crack tip stress field for plane strain deformations of
ferroelastic crystals. We confine ourselves to those materials whose paraelastic (parent)
phases are marked by low anisotropy and therefore regard them as isotropic. This assump­
tion is motivated by experiments on NiTi-SMAs for which it has been found (Melton and
Mercier, 1981; Miyazaki et al., 1982; M uk un than and Brown, 1988) that their higher
fracture toughness is attributable to the lower anisotropy of their parent phases. We note
that the copper-based SMA has a poor fracture behavior in the bi-crystal state due to the
mismatch of the transformation strain at the interface created by large anisotropy.

It is found that the stationary transformed zone has a null contribution to the SIF for
both phase transformations and ferroelastic switching. However, the transformed wake left
behind the steadily growing quasi-static crack tip noticeably reduces the SIF; this tough­
ening effect is sensitive to the mismatch angles between the crack surface and the principal
axes of the transformed material for ferroelastic switching, but not for ferroelastic trans­
formations. Numerical results for the steady-state crack growth are verified by the energy
method. These results are in qualitative agreement with the experimental observations for
NiTi-SMAs of low anisotropy.

2. COl\STITUTIVE RELATIONS FOR A FERROELASTIC MATERIAL

For plane strain deformations of a linear isotropic material, the strain energy density
per unit volume can be written as

(I)

where A = 1l![2( 1- 2v)], B = !f12 and D = 2!f, II and v are, respectively, the shear modulus
and Poisson's ratio, G,/I the strain components for infinitesimal deformations of the body
with respect to a set of rectangular Cartesian axes, and til. t12 and YJ3 their dilatational,
deviatoric and shear combinations, respectively. That is,

(2)

A continuum theory, based on the free-energy function W(GII, G12' G22), to describe the
deviatoric transformations under plane strain deformations of ferroelastic crystals has been
developed by. among others. Barsch and Krumhansl (1988) and Jacobs (1985, 1992):
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(3)

where A and D are two independent positive material constants, and F(172) is assumed to
be a Landau-type function,

where all strain gradient terms in the expression for the strain energy density employed by
Barsch and Krumhansl (1988) and Jacobs (1985, 1992) used to describe the structure of
the interface have been omitted. The constitutive relation (3) has been used to describe the
phase transformations in materials such as Nb,Sn, V3Si and In-TI alloys (Barsch and
Krumhansl, 1988; Jacobs, 1985, 1992). The material described by eqn (3) is anisotropic.

We note that piecewise linearized constitutive relations have often been adopted for
ferroelastic and ferroelectric materials, e.g. see the so-called "square-hysteretic" constitutive
curve in Aizu (1969) and Fatuzzo and Merz (1967). Several previous works on trans­
formation toughening have presumed a trilinear stress-strain constitutive relation with two
distinct stable phases having the same modulus (McMeeking and Evans, 1982; Budiansky
et af" 1983). Here, we adopt a piecewise linearized relation forrO == F('), as shown in
Fig. I, where the slopes of the two stable branches are taken to be equal to each other,

The ferroelastic-type shear transformation has also been adopted as a simplified model
for phase transformations in some SMAs by Falk (1980) and Achenbach and Muller
(1985). Therefore, when studying the shear ferroelastic transformation, we assume the
strain energy density to be given by

(4)

where g(.) == G'O is a piecewise linearized function shown in Fig. I. A similar assumption
has been made by Falk (1980) and Achenbach and Muller (1985) for studying one­
dimensional deformations of SMAs at low temperatures.

For the strain energy density (3), expressions for stress components are

f(Y]) or g(Y])

\uo,nOTr:! .
, ±C \ fertelastlc
, pa lastie, ph e +

" ph e "

Fig. 1. The constitutive functionf(ry) or g(ry).
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(TIl = i'W/(""11 =f("11 -/:22)+2A("11 +"22)

(T12 = (L2)(-'~VJI:12 = BE I 2

(T22 = ('WI('''22 = -f(E II -E22 )+2A(£11 +£22)' (5)

For the material initially in the paraelastic phase, we assume that when (CTI1-CTn) reaches
a critical value 2:, (or -2:,), the material undergoes a phase transformation from the
paraelastic phase to one of two ferroelastic phases and '12 jumps by 215. For the trans­
formation to the "1: I phase". the transformation strain ":11 assumes the values

(6)

and for the transformation to the "2:_ phase", Ihjumps by -215, and

(7)

where 6 is a constant associated with the deviatoric transformation and typically equals
0.1-0. I5 (Jacobs, 1985, 1992). This transformation from the paraelastic phase to one of two
ferroelastic phases is irreversible, even though the transformation between two ferroelastic
phases is reversible. The stress-induced transformation between two ferroelastic phases is
referred to as "ferroelastic switching" ; the switching-related toughening phenomenon will
be discussed in Section 6.

We assume that the paraelastic (parent) phase described by eqn (3) can be approxi­
mated as isotropic so that three constants A, D and B*, where B* is the constant modulus
for the piecewise linearized curve f VS 112 shown in Fig. I, are related to the shear modulus
fI and Poisson's ratio I' by

B* = fill. A = p/[2( 1- 21')], D = 2f1. (8)

The conditions for the isotropy of the paraelastic phase with three material constants (A,
B* and D) are

D = 4B*, A? B*, (9)

which are satisfied by eqn (8). Since the moduli of three phases for a trilinear material are
equal to each other, the isotropy of the paraelastic phase implies the isotropy of the
mechanical response of the two ferroelastic phases.

Similarly. for the strain energy density (4), the stresses are given by

CTI~ = (L2)(lW/(lEI2 =g('1,)/2

(T22 = UV;i'''22 = 2A'11 -2B'12' (10)

For the material initially in the paraelastic phase, we assume that when CTI2 reaches a critical
value flc (or - fl,). the material undergoes a shear transformation from the paraelastic
phase to one of two ferroelastic phases, and '1; jumps by the phase transformation constant
(; (cf. Fig. I). For the transformation to the "fl+ phase", '1; jumps by (; and the trans­
formation strains are given by

(11)

for the transformation to the "fl phase". '1; jumps by -J; and the transformation strains
are
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Fig. 2. A semi-infinite crack in the ferroelastic bi-crystal.
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(12)

We assume that the function g(IJJ) can be modeled by a "'trilinear curve", with the constant
modulus D *, as shown in Fig. I, and the paraelastic phase can be approximated as isotropic,
for which three constants A, Band D* are related to It and v by eqn (8), with Band D*
replacing B* and D, respectively. The transformation between two distinct ferroelastic
phases is referred to as "ferroelastic switching" and will be discussed in Section 6.

We consider the general case when at least one of the principal axes {n, f} of the
transformed material is not necessarily parallel (or perpendicular) to the xI-axis (see Fig.
2). For this case, it is readily seen that all of the above formulae are valid provided that we
replace {XI' xJ by {n, f}.

3. FORMULATION FOR TRANSFORMATION TOUGHENING

We study the toughening effects of stress-induced transformations in ferroelastic
materials described by constitutive relations (3) and (4).

Consider a semi-infinite crack along the bi-crystal interface X2 = 0 and occupying the
domain XI < O. the upper and lower half-planes are made of the same material with the
same material constants; however, the orientations of principal axes of the transformed
material in the upper and lower half planes, expressed by cp I and cp2 respectively and shown
in Fig. 2, are arbitrary and different in general. A single crystal is a special case for which
the upper and lower half-planes have the same orientation, thus cp, + cp2 = n/2.

When no transformation takes place, the interface disappears due to the identity of
two half-planes. Therefore, the transformation-free stress field is given by the classical
elastic stress field of mode 1. McMeeking and Evans (1982) and Green ef al. (1989), among
others, have shown that the transformation region can be estimated satisfactorily by the
transformation-free stress field for dilatational transformations when the transformed zone
is small. We adopt this simplification here. In other words, we neglect the influence on the
size of the transformation zone of the additional stress field induced by the transformation
strain. This simplifies the analysis; however, the so-called "'lock-up" phenomenon cannot
be studied. The transformed zone and the contribution I'!K, to the SIF and hence to the
toughening in the upper and lower half-planes can be calculated separately. Since I'!K, is
additive for the upper and lower half-planes, without loss of generality, we confine our
discussion to the upper half-plane; the result will also be applicable to the lower half-plane.

If we denote the mode I SIF of the virgin material by Ki'. and the additional SIF
induced by the transformation by I'!K" then the total SIF, K" is given by
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(13)

We use the polar coordinate system il'. 0:: I' ~ 0, J[ ~ () ~ ~J[. As shown in Fig. 2, let the
angle between a principal axis of the material in the upper half-plane and the xI-direction
be CPI = cp. 0 ~ cP ~ n.2. For any point [r, 0], the deviatoric and shear stress components
with respect to the principal axes: 11. /; of the transformed material are given in terms of
{(J II' (J 22, (J 12: by

(v,,,, - V II) = (v [ I - (J 2J cos 2cP + 2(J I2 sin 2cp

T,,, = ((J, c - (J [ I) cos cP sin cP + (J 12 cos 2cp. (14)

Since the paraclastic phase is isotropic and the transformed zone is determined by the
transformation-free stress fields, we substitute the classical elastic stress field of mode I into
eqns (14) and obtain

(rT",,-rT II ) = [K:' y(2nr)] sin II sin (2cp-l.S8)

T", = [K'[' \ (Xnr)] sin II cos (2cp-I.S8).

( 15)

(16 )

Because of the appearance of sin 0 in eqns (15) and (16), the radius of the transformed
zone will vanish along the interface II = O. Thus, there is no transformation strain incom­
patibility at the interface: this is true only for isotropic bi-crystals and may be approximately
valid for materials of low anisotropy. For bi-crystals of large anisotropy (Melton and
Mercier, 19X I ; Miyazaki ('/ (if., 19X2), the incompatibility of the transformation strain at
the interface will lead to an additional SIF which will increase the local stress concentration.
This is why a bi-crystal of large anisotropy exhibits poor resistance to intergranular fracture.

When (vm , - VII) reaches the critical value 2:, at a point, as stated in the previous
section, the material element at that point will undergo a deviatoric transformation: Gn" = 6,
G/{ = -i) and 1:,,1 = 1:1" = O. Similarly, if T"I reaches the critical value n, at a point, then the
material element there will undergo a shear transformation: G"" = 0,1:11 = °and C/If = 1: 1" = G.

Once the transformation occurs, the transformation strains in the {XI, xJ frame are given
by

for the deviatoric case, and

-6cos2cp (17)

for the shear case. For the inverse deviatoric and shear transformations, formulae (17) and
(18) are valid with () and I: replaced by -- () and -I:, respectively.

The SIF induced by the transformation strains c;l; is calculated by using the formulae
given in Hutchinson (1974) and Gao (1989), with the following results:

." 211
(' I':1.1<..1- = 8 1:~2 [7 cos (30;2) -3 cos (7e/2)]r 12 de dr

.ll

21
1e

I"/I.A'i l 8 I:fl [7 cos (311 2)+3 cos (78/2)]r ICd8dr
,-,,0

:1.A'"c = 3/~CI;f2 j' [sin(71!2)-sin(30/2)]r 12 dedI',
-..in



Transformations in ferroclastic: Illatcricti, 3295

(19)

where J.1 is the shear modulus, C = I ![2( 1- \')(2n) I land n is the transformed region.
Substituting eq ns ( 17) and ( 18) into eq ns ( 19), the SI Fs induced by the deviatoric and

shear transformations are given by

~

t1K[ = ±3/U)CJ sin(O) sin(2(p-s02)r I' dOdr
n

t1K1 = ± 3Ju:C I~ sin (8) cos (2(p- s(2)r I 2 dO dr,
.n

(20)

(21 )

respectively. The sign" + " is taken for transformed regions with "I + or IT, phase" and
"- " is taken for transformed regions with"'I or IT phasc", respectively.

We note that the size Q of the transformed zone depends on the crack growth condition;
here we consider the steady-state and quasi-static crack growth. The transformed zone is
divided into two parts, the transformed loading Lone (Budiansky et al.. 1983) ahead of the
crack tip and the transformed unloading wake behind the advancing crack tip. Therefore,
we divide t1Kr into two parts:

(22)

where t1K,(S) and t1K,( ~V) denote contributions to the SIF from the transformed loading
zone and the transformed unloading wake. respectively. t1K[(S) is found to equal the SIF
induced by the stationary transformed zone. We evaluate t1K1(S) first for a stationary
crack.

4. STATIOI\iARY CR!\CK

Budiansky et al. (1983) have shown that for the dilatational transformation, the
stationary transformed zone contributes nothing to the SIF. We show below that the same
is true for the ferroelastic transformation studied herein.

4.1. Deriutoric trall.l'jim17otioll.l'

Using eqn (15), the radius 1'* (0) of the stationary transformed zone is given by

r*(!:J) =(1 2n)[K:1 L,]'[sin 0 sin (2(p-l.sO)j', Or\2*(O) = sin 01'*(8). (23)

Thus. for a half-plane

t1K'I) f"
I = 3,,:2 sin' (0) sin (2(p - 2.sli) sin (2(p -1.50) dO.

'l.K;' II

where

jl<)C
'l.=

v nI,

is a nondimensional number. Noting that

(24)

(25)
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f IT sinC ((I) cos (0) dO = 0,
Il

we obtain

c. Q. Ru and R. C. Batra

rrr sin C (8) cos (48) de = 0,J,

~KjS' = 0.

f"sin2 (e) sin (48) d8 = 0,
Il

(26a)

(26b)

Therefore, the contribution of the stationary transformed zone to the SIF is always null.

4.2. Shear transj()rmations
Using eqn (16), the radius r*(O) of the stationary transformed zone for the shear

transformation is given by

r*(e) = (I/8n)[K:'jD,f[sin 8 cos (2cp-1.58W

and for a half-plane

~KI\' 31"--'- = --;= sinc (0) cos (2cp - 2.5e) cos (2cp - 1.58) d8,
uKo /2jJ I y' 0

where

is a nondimensional number. Using eqn (26a), we conclude that

~Kj\' = 0.

Thus, the contribution of the stationary transformed zone to the SIF is zero.

(27)

(28)

(29)

(30)

S. STEADY·STATE AND QUASI·STATIC CRACK GROWTH

As far as toughening is concerned, the transformed loading zone is equivalent to the
stationary transformed zone, whose effect has been found to be null. Therefore, we find the
contribution to toughening of the transformed unloading wake behind the steadily growing
crack tip.

5.1. Daiatoric transformations
The size of the transformed wake in deviatoric transformations depends strongly on

the angle cp between the material principal axis and the xI-axis. Values of variables deter­
mining the size of the transformed wake for nine values of the angle cp are given in Table
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Table I. Values of variables for the deviatoric ferroelastlc transformation in a half-plane
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'p H*[(K;'.LJ' 71] 0* H**[(K:'L,.j' 71] 0** t1K,[(;(K:'J Others

0 0.035 2.5 038 1.25 -1.27 011;:::; 2.09
71/16 0.01 2.7 0.47 1.4 - 1.38 On;:::; 2.35
71/8 <0.0015 2.8 and 0.5 157 - 1.42 On;:::; 2.61

03
371;16 0.01 0.45 0.47 l.7 -138 011;:::; 0.78:(i*;:::; 0.9

71/4 0.035 0.6 0.39 1.9 - 1.29 Oil ;:::; 1.05: 0* ;:::; 1.2
5rr/16 0.085 IUS 0.27 2.0 -1.24 Oil ;:::; 1.31: IJ* ;:::; 1.6
371/8 0.17 0.9 0.17 2.2 -1.44 Oil ;:::; 1.57
h/16 0.28 II 0.08 :135 -1.24 Oil ;:::; 1.83

ni2 038 1.25 0.035 2.5 -1.27 Oil ;:::; 2.09

I, where H* denotes the height of the" + phase"' transformed wake in the upper half-plane
and 8* the corresponding angle at which H* is realized; similarly, H** equals the height
of the" - phase"' transformed wake and 0** the corresponding angle at which H** is
realized. According to the condition (0"'11I- Gil) = ± L, there will be three transformed
regions over a half-plane for some values of the angle ([J; however, it is found that the
height of one of them is always very small as compared to those of the other two and is
therefore omitted from subsequent discussion. The two noticeably transformed regions are
shown in Figs 3 and 4.

The discussion below is divided into three cases according to the range of ([J; the
corresponding values of H*, H**. 0* and 0** are given in Table l.

Case (a). 0 :s; (P :s; 1[8. We have

H** > H* but 0* > 0**

The transformed wake has the shape shown in Fig. 3(a) and we have the following
expression for the induced SIF for a half-plane:

!!K1 rli
'.. _(y/H** sin (O)ISin(2(p-1.50)1)

-0 = - 6 SI11 (0) SI11 (2(p - 2.JO) ~!:-----" ----=- -.--- dO
aK I .0" -jSI11(O) ,,2

Case (b). 1[/8 < ([J < 31[8. From Fig. 3(b), we have

H** > H* with 0** > 0*

Therefore, the induced SIF for a half-plane is given by

-6 r" sin (8) sin (2([J-2.58)(-~lf~*- _ siJ1(O)Ls.iI1J?;(P~ l.5fJ)I) dO
Jon VSI11 (0) V 2

J
~I!' (ill* Sin(0)lsin(2(p-1.58)1)

+6 sin (0) sin (2([J-2.50) - "'_-:-'---=----- ! dO.
O' y! SI11 (0) -j 2

where angle £}-* is shown in Fig. 3(b).
Case (c). 31[/8 :s; ([J :s; 1[ i 2. We now have

H** :s; H* with 0** > 0*

(32)
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90 9=9* *
\ '

H *~-r::l:: -\,---77-----,',/
, "
, r"(9) /, ", ", "L+ region /'

/

I:- region

H * *

o

a). 0 $ q> $ 1t/8

9=9* *,

r* (9)

][1

o :11:1

b). 1t/8 < q> < 31t/8

9=9"
90 /

H" \ "
--~~:~::\:---7T\---~,'

\ ,
\ ,
\ r*(9) "

I /

\ " (+)
... \ /

L- region ( - )"', \ ,/
" /_____-=_---"'.'.~__=_:_:c _

o ][1

c). 31t/8 ::; <p::; 1t/2

Fig. 3. Transformation zones. due to deviatoric transformations. for steady-state and quasi-static
crack growth in a half-plane. (a) 0 ~ <p ~ rri8: (b) rr/8 < <p < 3rr/8; (c) 3rr/8 ~ <p ~ rr/2.

and obtain the following expression for the induced SIF for a half-plane:

11K. = 6fO
**sin(0) sin (2CP-2.S0)( .JH* _ sin (0)ISin(2CP-1.50)I)dOdr

r:t.K? 0* -lsin (0) .J2

fn (J'H* Iii** Sin(0)lsin(2CP-1.58)1)+6 sin (0) sin (2cp-2.S0) -~----2 1-.-+ ~ dO dr.
0** Sill (0) \j Sill (0) /2v

(33)

5.2. Shear transformations
For the shear transformations. the data for the transformed wake for nine values of

angle cP is given in Table 2. We shall use H*, H**, 0* and 0** in the same sense as that in
Section 5.1 and give below the characteristics of the transformed wake according to the
range of cP; the corresponding values of H*. H**. 0*, ()* and 0** are given in Table 2.

Case (a). 0 :;:; cP :;:; n/8. From Fig. 4(a), it follows that

H* :;:; H** with 0* < 0**.
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0- region

o z,

a).Osq>$1t/8
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H'
90

\,
._-----~---------\

\

TI+reglon \
\,

\

o

b). 1t/8 < q> < 31t/8

Xl

8=8'
H ,-----;>...' --__

0+
region

r' (8)
(+)

________---'=_~.I-_---=_c:. _
o z,

c). 31t/8:S q> :S rr,/2

Fig. 4. Transformation zones. due to shear transformations. for steady-state and quasi-static crack
growth in a half-plane. (al 0 :s: ifJ :s: n/S; (b) n/8 < ifJ < 3n/8; (c) 3nj8 :s: ifJ ~ n12.

Table 2. Values of variables for the shear ferroelastic transformation in a half-plane

ifJ H*![(Ki';nYn] 0* H**j[(Kp jD,)' /n] ()** ~Kd[PK:)] Others
-~~---_.__._---.- -------._-

0 0.0085 0.60 0.097 1.86 -0.64 00 ::::: 1.05; ft* ::::: 1.2
n/l6 0.02 0.75 0.070 2.0 -0.63 00 ::::: 1.3\ ; ft· ::::: 1.60
n!8 0.045 0.92 0.045 2.2 -0.75 00 ::::: 1.57; ft·::::: 0··

h/16 0.07 1.10 0.021 2.32 -0.63 00 ::::: 1.83
n/4 0.096 125 0.007 2.5 -0.62 00 ::::: 2.09

5njl6 0.116 1.45 0.003 2.7 -0.69 00 ::::: 2.35
3nj8 0.125 1.60 <0.0005 0.30 and -0.71 00 ::::: 0.53

2.85
7rr!l6 0.12 1.72 0.0025 0.45 -0.70 00 ::::: 0.78; ft·*::::: 0.9

n/2 0.097 1.86 0.0085 0.60 -0.64 00 ::::: 1.05; ft·· ::::: 1.2

SAS 32-ZZ-l
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For this case
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11K, _ ill'. _ (J'-H* _~in(0)ICOS(2CP-I.Se)l)d8
- 6 SIn (8) cos (2cp 2.S0) . «()) C

13K? II' SIn 2y' 2

in . (J-H** Sin(O)lcoS(2CP-1.50)1) 0
-6 SIn(0)cos(2cp-2.S0) ~(O)- r- d.

II" SIn 2y'2

Case (b). n/8 < cp < 3n/8. Referring to Fig. 4(b), we have

H* > H** with ()* < 0**,

and for a half-plane

11K, _ ill" . _ (~f H* _ Sin(O)lcoS(2CP-I.S0)1)dO- 6 SIn (0) cos (2cp 2.S0) . 0) ~
13K:> II' SIn ( 2J2

i
IT (~ii* J'H** sin (O)lcos (2CP-1.50)1)+6 sin (0) cos (2cp-2.50) -c-----e) -2 ~+ / de dr.
II" SIn (SIn 2y 2

Case (c). 3n/8 ~ cp ~ n12. We deduce from Fig. 4(c) that

H* > H** with 0* > 0**

and the induced SIF for a half-plane is given by

11K, ill" . (~r-ii** sin (e)lcos (2CP-1.50)1)
-0 = -6 Sin (e) cos (2cp-2.S8) -.--) - , de
13K, II" SIn(() 2y'2

r
" (!~ sin (O)lcos (2CP-1.50)!)

+6 sin(e)cos(2cp-2.50) I~-I)-- r- dO.
"II' 'Ii Sin ([ ) 2.) 2

(34)

(35)

(36)

Values of 11K! for each of the deviatoric and shear transformations in a half-plane are given
in Tables I and 2, respectively. The transformations induced by the steady-state and quasi­
static crack tip stress fields considerably reduce the SIF and, therefore, enhance the fracture
toughness for all values of the angle cp between the transformation axis and the crack
surface. These results will also be derived by the energy method in Section 7.

6. TOUGHENING ASSOCIATED WITH FERROELASTlC SWITCHING

Virkar and Matsumoto (1986) have shown that switching between different ferroelastic
phases may also enhance the fracture toughness of some materials. The switching between
ferroelastic phases induces a strain that may interact with the deformation field near a crack
tip. Therefore, ferroelastic switching between different phases is another possible toughening
mechanism for ferroelastic materials.

We assume that the original material is in one of the two ferroelastic states instead of
the paraelastic phase assumed above.
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6.1. Deviatoric switching
We shall distinguish between the following two cases.

6.1.1. Initial L _ phase. If the initial state is in L _ phase, then as stipulated in Section
2, the strain 112 jumps by 4£5,

when (iT ll - iTn) reaches the critical value L,. This switching is different from the paraelastic­
ferroelastic transformation discussed above in that the strain jump does not occur even
when (iT ll - iT22) reaches - L e . Therefore, the contribution of the switching strain to the SIF
is twice that of the contribution of the "L + phase" transformed zone shown in Fig. 3, where
eo is the angle between the adjacent boundaries of the" +phase" region and the" - phase"
region.

For stationary cracks, the SIF induced by deviatoric switching for a half-plane is given
by

and

tJ.K(S) ,- ""_1_
0

=6-.}2 sin 2 (O)sin(2cp-2.50)sin(2cp-1.50)de for 0~cp~n/8
'Y.K, "0,,

tJ.KIS) ~io"
_1_

0
= 6)2 sin 2 (e) sin (2cp - 2.5e) sin (2cp - 1.5e) dO for 71/8 < cp ~ n12.

rxK I 0

(37)

(38)

The values of tJ.K\SI calculated from eqns (37) and (38) are vanishingly small (the absolute
value is smaller than 10 -5).

For the steady-state and quasi-static cracks, the corresponding formulae for a half­
plane are given below. The values of H*, H**, e*, tJ* and e** are given in Table I.

Case (a). 0 ~ cp :s;: n/8:

tJ.K1 fn.. (JH* sin (e)ISin(2CP-1.50)!)
-- = 12 SIn (0) SIn (2cp-2.50) ---;=== - ---.-.----- dO.
'Y.Ki) 0' -.} sin (0) J2

Case (b). 71/8 < cp < 3n/S:

tJ.K, JI'O' ()H* Sin(e)!Sin(2CP-1.50)!)
- = 12 sin (e) sin (2cp-2.50) -----::=,== -' . dO.
K o /. 0) /2rx ,0' V StU ( V

Case (c). 3n/8 ~ cp :s;: ni2:

tJ.K1 fO
" . • (/H* Sin(O)ISin(2CP-1.5e)!)- = 12 StU (0) StU (2cp - 2.50) --;=---'= --- ---!~-- - de dr

rxK:' 0' -.} sin (0) -.} 2

(39)

(40)

f.
" ( (H*+ 12 sin (8) sin (2cp-2.50) . /-'-8"-

,,0" \I sm ( )
H** )

sin (0) dO dr. (41 )

The values of tJ.K1 computed from eqns (39)-(41) are summarized in Table 3.

Table 3. Toughening associated with the deviatoric switching for steady·state and quasi-static crack growth in a
half-plane

L\K,!(ClK;'J - 0.20 -006
(initial2: phase)

L\K,i[ClK:'j -234 -2.70
(initial 2:, phase)

o rr;l6 rriS 3rr/l6 rri4 5rr/l6 311/S 7rr/l6 n/2
-----.--._.. _-- - -- ---- -,--_.- ..--------.- -----_._---

negative and -0.12 -(US -0.96 -1.92 -2.04 -2.34
vanishingly small

-2.S2 -2.64 -2.20 -1.52 -0.96 -0.44 -0.20
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6.1.2. Initial L + phase. The results for this case can be obtained from the results of
Sections 5 and 6.1.1. The values of 11K, (S) calculated for the stationary crack are found to
be very small (the absolute value is smaller than 10- 5

). Results for the steady-state quasi­
static crack growth are given in Table 3. The sum of contributions to the SIF from the
"+ phase" and" - phase" regions for deviatoric switching shown in Table 3 equals twice
that of the deviatoric transformation listed in Table I. This is also true for shear switching.

6.2. Shear switching

6.2.1. Initial n_phase. For the static case,

11K'S) 6 iO"
-'~o = ---;= sin2 (0) cos(2rp-2.50) cos(2rp-1.50) dO for 0 ~ rp < 3n/8 (42)
13K, -.)2 0

and

11K'S) 6 fIT
_I~ = ----= sin 2 (0) cos (2rp - 2.50) cos (2rp -1.50) dO for 3n/8 ~ rp ~ n/2.
13K:) )2 0"

(43)

Similar to the deviatoric switching cases, we find that the values of I1K\S) calculated from
eqns (42) and (43) are extremely small (the absolute value is smaller than 10- 5

). Therefore,
we conclude that the contribution of the stationary transformed zone to the SIF is always
null for the ferroelastic switching studied herein.

For the steady-state quasi-static crack growth, we obtain the following for a half­
plane. Values of H*, H**, 0*, 0** and ~* are given in Table 2.

Case (a). 0 ~ rp ~ n/8 :

11K, f~" (JH* Sin(0)lcoS(2rp-1.50)1)
--0 = 12 sin (8) cos (2rp-2.50) ~;--O--- " dO.
fJK, 0" sm ( ) 2.,) 2

Case (b). n/8 < rp < 3n/8:

I1K, III"" (!j..j* Sin(O)!COS(2rp-1.50)1)-0=12 sin (0) cos (2rp-2.50) 1;'-'--- ,-- dO
13K, II" \jsm(8) 2.,)2

(44)

+12fIT sin (8) cos (2rp-2.58)(J H*O -
II"" sm ( )

Case (c). 3n/8 ~ rp ~ n/2:

H** )
~) dOdr.
sm (u

(45)

11K, fIT (J H* Sin(O)ICOS(2rp-1.50)1)
-0 = 12 sin (0) cos (2rp - 2.58) ---.-0- - ,.-- dO.
13K, II" sm( ) 2.,)2

(46)

The values of 11K, for shear switching in steady-state crack growth are summarized in Table
4.

Table 4. Toughening associated with the shear switching for steady-state and quasi-static crack growth in a half­
plane

'fJ 0 rr/!6 rr/8 3rr!I6 rr/4 5rr/l6 3rr/8 7rr/!6 n/2
-----._- - _._--_ .._-----.------_._------ ._---

t1K,/[{JK:' j ~0.18 -0.46 -1.00 -1.02 -1.l6 -1.34 - 1.42 -1.34 -1.10
(initial n phase)

t1K,!(fJK:' j ~ 1.10 --0.80 -0.50 -0.24 -0.08 -0.04 negative and -0.04 -0.18
(initial n, phase) vanishingly small
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6.2.2. initial n "phase. The values of !JJ.K, (5) calculated for the stationary crack are
very small (the absolute value is smaller than 10- 5

); the results for the steady-state crack
growth are collected in Table 4. The sum of contributions to the SIF from the" + phase"
and" - phase" regions is found to be twice that made by the shear transformation listed in
Table 2.

In summary, we conclude that the contribution of the stationary transformed zone to
the SIF is always negligible for switching between different ferroeIastic phases. However,
for the steady-state and quasi-static crack growth, the toughening effects depend strongly
on the angle between the principal axis of the transformed material and the crack surface.
For all values of this angle discussed herein, both the deviatoric and shear switching reduce
the SIF and hence enhance the fracture toughness.

7. E:'-IERGY METHOD FOR STEADY-STATE CRACK GROWTH

The energy method for the calculation of transformation toughening in steady-state
and quasi-static crack growth has been developed by, among others, Budiansky et al. (1983)
and Rose (1987). We now show that the results in Tables 1 and 2 can also be obtained by
this method. Using a path-independent integral, Budiansky et al. (1983) have derived the
following relation for the steady-state quasi-static crack growth in an isotropic elastic
material:

(47)

where !J.K, is the SIF induced by the phase transformation near the crack tip, U the
strain energy density which depends on the deformation history, H the half-height of the
transformed wake and E Young's modulus. For the dilatant transformation, it is found
that

I
II

U(y) dy = H(J;"ff,
(l

where (J;" is the critical mean stress for the dilatant transformation and tV the transformation
dilatation. Ferroelastic switching will occur when a material point shifts from one fer­
roelastic phase to another ferroelastic phase during the process ofsteady-state crack growth.
We discuss below the deviatoric and shear transformations.

7.1. Del'iatoric trans/ormations
When 0 ~ q; < 3rr/8, recalling Figs 3(a,b), we obtain

-) h !J.K
- ~v, ~ [H**+2H*] = __I

(K?:.) aK?
rr1:;

(48)

for a half-plane, where we have neglected the second-order term (!J.K,)2 because the assump­
tion that the effect of transformation-induced stress on the transformed zone is negligible
implies that the higher-order effect can be omitted. This is quite reasonable for small
transformation zones.

It may be verified that the numerical values of !J.K, given in Table I for 0 ~ q; ~ 3rr/8
differ from those obtained from eqn (48) by less than I%. Similarly, for 3rr/8 ~ q; ~ rr/2,
we have
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-2/i AK
--"--[H*+2H**] =_1

(K:':.) aKp
nr.~

(49)

for a half-plane, which also gives results that agree with those given in Table I.

7.2. Shear transj(lrmations
For 0 ~ qJ ~ n/8, we have

-4ji AK1

-~---[H**+2H*] =--

( K~:.. ) 13K:'
nO,"

and for n/8 < qJ ~ 71/2

(50)

(51)

for a half-plane. The numerical values of AK, given in Table 2 differ from those given by
eqns (50) and (51) by less than 1.6%. Since we have neglected the influence of the induced
stress on the transformed zone, we cannot discuss the so-called "lock-up" phenomenon
[see e.g. Rose (1986), Amazigo and Budiansky (1988), Stump and Budiansky (1989) and
Andreasen and Karihaloo (1994)]. Due to the lack of experimental data for transformation
stresses L c and On we are unable to discuss quantitatively the toughening effect and compare
them with the known "lock-up" condition which defines the limit of validity of the present
method. We note that the calculation of toughening effects for steady-state and quasi-static
crack growth by the energy method is straightforward. An advantage of the energy method
over the method of Sections 5 and 6 is that it may be easily extended to the steady-state
crack growth in anisotropic media.

8. CONCLUSIONS

We have evaluated the SIFs induced by the phase transformations near a crack tip in
ferroelastic materials whose paraelastic phases are of low anisotropy and have modeled
them as isotropic. We have neglected the effects of the transformation-induced stress on
the size of the transformed zone. It is found that the stationary transformed zone ahead of
a crack tip contributes nothing to the SIF for single and bi-crystals. However, the trans­
formed wake left behind the steady-state quasi-static crack tip always reduces the SIF
considerably and therefore enhances the fracture toughness. Similar results for ferroelastic
transformations in steady-state and quasi-static crack growth are obtained by the energy
method. The toughening effect is found to be insensitive to the angle qJ between the principal
axis of the transformed material and the crack surface for ferroelastic transformations
discussed herein; however, it is very sensitive to this angle for the ferroelastic switching
discussed in Section 6. The computed results show that deviatoric and shear transformations
and switching induced by the crack tip stress fields enhance the fracture toughness of
ferroelastic crystals of low anisotropy. These results are in qualitative agreement with the
observations for NiTi-SMA of low anisotropy.
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